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Abstract In the present work, quantitative structure–

reactivity relationship (QSRR) approaches were used to

predict the chain transfer constant log Cx of some organic

compounds as chain transfer agents in free-radical poly-

merization of styrene. The energy of the lowest unoccupied

molecular orbital, hydrogen-bonding-dependent hydrogen

donor charged area, first-order Kier and Hall index, final

heat of formation/number of atoms, count of H donor sites,

and Min[(0.1) bond order of a C atom were selected as

the most relevant variables from the pool of calculated

descriptors by the stepwise multiple regression feature

selection method. Then, an artificial neural network and

multiple linear regressions were utilized to construct the

nonlinear and linear QSRR models. The standard errors in

the prediction of log Cx by the linear regression model

were 0.641, 0.964, and 0.843 and by the neural network

model were 0.049, 0.076, and 0.090 for training, internal,

and external test sets, respectively. The predictivity of the

artificial neural network model was further examined by

cross-validation methods, which produce a Q2 value of

0.85. The results of this study revealed the applicability of

QSRR approaches in prediction of the chain transfer con-

stant by using an artificial neural network.
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Introduction

The chain transfer step in a free-radical polymerization

process involves the reaction of a propagating chain (Pn�)
with a transfer agent (RX) to terminate one polymer chain

and produce a new radical (X�), which initiates a new chain

(P1�) [1] as follows:

Pn� þ RX�!
ktr;X

PnRþ X� ð1Þ

Pn� þM�!
kp

Pnþ1� ð2Þ

X� þM�!
kt;x

P1� ð3Þ

In the above equations, M represent the monomer

molecule. Chain transfer agents have at least one weak

chemical bond, and therefore can facilitate the chain

transfer reaction. The efficiency of a chain transfer catalyst

is expressed by the chain transfer constant (Cx), which is

the ratio of the rate constant for the chain transfer reaction

(ktr) to propagation step (kp) (Eq. 4). Chain transfer

constants are generally determined from the Mayo

equation (Eq. 5) [2]:

Cx ¼
ktr;x

kp
ð4Þ

1

DPn
¼ 1

DPn0

þ ktr½X�
kp½M�

ð5Þ

In the above equation, DPn is the number-average

degree of polymerization, which is determined for a series

of free radical reactions with different ratios of the

chain transfer agent concentration [X] to the monomer

concentration, and DPn0 is the number-average degree of

polymerization in the absence of the chain transfer agent.

Since understanding the chain transfer mechanism not only
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clarifies the micro-kinetic processes of a free-radical

polymerization process but can also be used to measure

the relative reactivity of the growing radical toward the

transfer substance, theoretical calculations of the kinetic

chain transfer constants play an important role in polymer

chemistry [3].

We imagined that the value of chain transfer constants

in free-radical polymerization processes is affected by the

structural characteristics of the chain transfer agents, aND

therefore it should be possible to predict it by quantitative

structure–property relationship (QSPR) approaches. In

QSPR methods, the chemical properties of molecules are

quantitatively correlated to molecular structural features,

which HAVE BEEN named molecular descriptors. The

results of QSPR analyses were not only used in prediction

of properties of new compounds but can also be used to

further investigate the mechanism of processes of interest.

A quantitative structure–reactivity relationship (QSRR)

can be considered as a variant of QSPR, where the

chemical reactivity of reactants or catalysts in a specified

chemical reaction is related to their chemical structure

[4]. The history of structure–reactivity relationship mod-

eling goes back to the end of the 1970s when Carpenter

and coworkers qualitatively studied the effects of sub-

stituents and of benzannelation on the rates of pericyclic

reactions [5, 6]. They used semi-empirical quantum

chemical descriptors to develop quantitative models for

some unsaturated hydrocarbons. Today, there are a num-

ber of reports concerning QSRR investigation of chemical

reactions. For example, Hemmateenejad et al. used mul-

tiple linear regressions (MLR) and partial least squares

(PLS) for QSRR modeling of a Michael addition reac-

tivity index of different substrates using different catalysts

(SDS, silica gel, and ZrOCl2) [4]. The results of their

investigations revealed that the reactivity of different

enones and substrates in Michael addition reactions is

controlled by Coulombic interactions (dipole and charge)

as well as the orbital energetic parameters. They con-

cluded that different catalysts probably act in different

mechanisms. In other work, Katritzky et al. [7] used

QSRR approaches to investigate the solvent effect on the

decarboxylation rate constants of 6-nitrobenzisoxazole-3-

carboxylates. Moreover, Szentpaly et al. [8] developed a

quantum chemical structure–reactivity relationship model

to predict the chemical reactivity of polycyclic aromatic

hydrocarbons. Also, Masunaga et al. developed some

QSRR models to predict the transformation rate constants

of p-substituted benzonitriles in raw sediments and in

sediment extract fractions. They concluded that the elec-

tronic substituent constant (Hammett rp) controlled the

transformation rate constants of these compounds [9]. In

other work, Ignatz-Hoover et al. [10] used QSRR

approaches to predict the kinetic chain transfer constants

of some organic agents in polymerization of styrene at

60 �C. They obtained three- and five-parameter MLR

models with correlation coefficients of R2 = 0.725 and

R2 = 0.818, respectively. Descriptors involved in these

equations were consistent with the proposed mechanism

of the chain transfer reactions. In the present work, we try

to improve these QSRR models by using an artificial

neural network (ANN) as a nonlinear feature mapping

technique.

Results and discussion

Molecular diversity analysis

In this study, diversity analysis was performed on the

selected dataset to make sure that molecules in the struc-

tures of the training or test sets can represent those of the

whole dataset [11]. We considered a database of n com-

pounds generated from m highly correlated chemical

descriptors {xj}j=1
m . Each compound, Xi, is represented as a

vector of:

Xi ¼ ðxi1; xi2; xi3; . . .; ximÞ for i ¼ 1; 2; . . .; n ð6Þ

where xij denotes the value of descriptor j of compound Xi.

The collective database (X = {Xi}i=1
N ) is represented by a

n 9 m matrix (X) as follows:

X ¼ ðx1; x2; . . .;XNÞT ¼

x11 x12 � � � x1m

x21 x22 � � � x2m

..

. ..
. . .

.
. . .

xm1 xm2 � � � xnm

2
6664

3
7775

ð7Þ

Here, the superscript T denotes the vector/matrix

transpose. A distance score for two different compounds

Xi and Xj can be measured by the Euclidean distance norm

dij, based on the compound descriptors:

dij ¼ kXi � Xjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

k¼1

xik � xjk

� �2

s
ð8Þ

Then, the mean distances ð�diÞ of one sample to the

remaining ones were computed by means of Eq. 9.

�di ¼
Pn

j¼1 dij

n� 1
i ¼ 1; 2; . . .; n ð9Þ

The mean distances of samples were normalized within

the interval 0–1 and plotted versus the experimental log Cx.

The results of this test illustrate the good distribution of test

sets among whole of the dataset. The training set with a

broad representation of the chemistry space was adequate

to ensure model stability and the diversity of the test set

can prove the predictive capability of the model.
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Model development

Descriptors, which were selected by stepwise variable

subset selection, were used as independent variables and

log Cx was considered as dependent variable to develop a

MLR model. The correlation matrix between these

descriptors is shown in Table 1. As can be seen in this

table, the linear correlation between each two descriptor is

lower than 0.60, which reveals that there is no significant

correlation between selected descriptors. The obtained

MLR model was used to calculate the log Cx values for test

sets as well as the training set.

The MLR calculated values of log Cx are shown in

Table 3 (in ‘‘Methodology’’). Then, an ANN model was

developed considering a nonlinear relationship among

selected molecular descriptors and log Cx. The statistical

parameters of the developed ANN model are shown in

Table 2.

The values of standard errors in prediction of log Cx by

the ANN model are 0.049, 0.076, and 0.091 for training,

internal, and external test sets, respectively, while these

values for MLR model are 0.641, 0.964, and 0.843 for

training, internal, and external test sets, respectively.

Comparison among these values and other statistics in

Table 4 (in ‘‘Methodology’’) reveals the superiority of the

ANN over the MLR model. These observations show that

there are some nonlinear relationships among selected

molecular descriptors and log Cx. The ANN predicted

values of log Cx are plotted against their experimental

values for training, internal, and external test sets in Fig. 1,

which shows good correlation.

The residuals of this calculation are plotted against their

experimental log Cx in Fig. 2. The random distribution of

residuals around the zero line indicates that there is no

systematic error contained in the developed ANN model.

Also, it can be seen in this figure that the residual of the

predicted value of log Cx for 1,2-dibromoethylbenzene is

0.2, which is three times greater than the standard error of

the ANN model and can be considered as an outlier. By

removing of this outlier, the R2 value was improved from

0.896 to 0.944, and the value of standard error became

0.558 for the external test set.

Model validation

Since the real utility of a QSRR model lies in its ability to

accurately predict the modeled property for new molecules,

a reliable assessment of the predictive power is necessary

for a confident application. This is achieved by validating

the model, which is performed in this research in three

different ways: external validation test by dividing the

dataset into training, internal, and external test sets, internal

validation test by applying the cross-validation (CV) test,

and the Y-randomization procedure. In the present study,

we used the leave-many-out (LMO) cross-validation to

evaluate the robustness of developed models, the results

being indicated by QLMO
2 , which can be calculated from the

following equation [12]:

Q2
LMO ¼ 1�

P
ðyi � ŷiÞ2P
ðyi � �yÞ2

ð10Þ

where yi; ŷi; and; �y were the experimental, predicted, and

mean values of log Cx. In LMO, M represents a group of

randomly selected data points, which one would leave out

at the beginning and that would be predicted by the model

that was developed by using the remaining data points. So,

M molecules are considered as prediction set. The result of

the leave-nine-out CV test on the ANN model indicates a

QLMO
2 value of 0.85, which showed the robustness of the

model. Randomization tests were also carried out to prove

the possible existence of chance correlation [13]. The result

of 30 times randomization of log Cx vectors gives �R2 ¼
0:125; which reveals that there is no chance correlation in

the dataset. As mentioned in the previous section, Ignatz-

Hoover et al. used the QSRR approaches on the same

dataset, and reported the statistics of SE = 0.825,

R2 = 0.8181 for their best five-parameter model, without

further validation of their model. By comparison between

Table 1 Correlation matrix among selected descriptors

1v DHf/NA ELUMO CHD HDCA-1 BOC,min

1v 1 0.037 -0.314 -0.309 -0.497 -0.164

DHf/NA 1 -0.08 0.033 -0.184 -0.457

ELUMO 1 0.300 0.213 0.076

CHD 1 0.583 0.107

HDCA-1 1 0.230

BOC,min 1

Table 2 Statistical results of ANN and MLR models

Models Training set Internal test set External test set

R2 SE F R2 SE F R2 SE F

ANN 0.957 0.049 1417.605 0.931 0.076 94.943 0.896 0.090 60.114

MLR 0.886 0.641 496.273 0.824 0.964 32.708 0.857 0.843 41.897
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Table 3 Data set and the observed and MLR and ANN predicted values of log Cx

No. Name log Cx exp log Cx MLR Residual log Cx ANN Residual

1 Benzene -1.56 -0.66 -0.90 -1.07 -0.49

2 1-Chlorobutane -1.40 -0.79 -0.61 -0.89 -0.51

3 tert-Butylbenzene -1.30 -0.09 -1.21 -0.24 -1.06

4a 1-Bromobutane -1.22 0.43 -1.65 -0.56 -0.66

5 Methyl 2-chloroacetate -0.52 -0.72 0.20 -1.08 0.56

6 Acetonitrile -0.36 0.37 -0.73 -0.87 0.51

7 Diethyl malonate -0.33 -0.04 -0.29 -0.22 -0.11

8a 1-Ethylbenzene -0.16 -0.34 0.18 -0.67 0.51

9 1-Chlorobenzene -0.10 0.00 -0.10 -0.12 0.02

10b 2-Chlorobutane 0.08 -0.77 0.85 -0.89 0.97

11 Trichloromethane 0.08 0.92 -0.84 0.65 -0.57

12a 1-Chloro-2-methylpropane 0.15 -0.90 1.05 -0.89 1.04

13 2-Propen-1-ol 0.18 1.21 -1.03 0.76 -0.58

14 1-Bromobenzene 0.25 0.41 -0.16 0.28 -0.03

15 Phenylamine 0.30 0.67 -0.37 0.28 0.02

16 1,4-Diisopropylbenzene 0.52 0.36 0.16 0.47 0.05

17a 1,4-Hydroxybenzene 0.56 1.83 -1.27 0.93 -0.37

18 Dimethyl ketone 0.61 0.82 -0.21 0.30 0.31

19b Benzaldehyde 0.66 1.15 -0.49 1.10 -0.44

20 N,N-Dimethylacetamide 0.66 1.46 -0.80 0.35 0.31

21 2-Butanone 0.70 1.24 -0.54 0.85 -0.15

22 Di(2-propenyl) propanedioate 0.72 0.46 0.26 0.63 0.09

23b 2-Phenylacetic acid 0.78 1.39 -0.61 0.88 -0.10

24 sec-Butylbenzene 0.79 0.02 0.77 -0.05 0.84

25 1,4-Dibutylbenzene 0.85 0.89 -0.04 0.92 -0.07

26 Acetaldehyde 0.93 0.57 0.36 0.67 0.26

27b 4-Chlorobenzaldehyde 0.94 1.69 -0.75 1.28 -0.34

28 1,4-Di(sec-butyl)benzene 1.03 0.83 0.20 0.91 0.12

29 4-Bromobenzaldehyde 1.08 2.06 -0.98 1.28 -0.20

30 3-Chlorobenzaldehyde 1.14 1.61 -0.47 1.19 -0.05

31 Phenol 1.15 0.63 0.52 0.62 0.53

32 Chloroacetic acid 1.46 1.45 0.01 1.83 -0.37

33 Diethyl 2,2-dichloropropanedioate 1.48 1.93 -0.45 1.93 -0.45

34 Dichloroacetic acid 1.54 1.92 -0.38 1.36 0.18

35b 4-Methylphenol 1.59 0.98 0.61 0.89 0.70

36b 2-Methylphenol 1.63 0.70 0.93 0.66 0.97

37 (4-Methoxyphenyl)acetonitrile 1.71 1.37 0.34 1.72 -0.01

38 (4-Chlorophenyl)acetonitrile 1.82 1.75 0.07 1.63 0.19

39 Trichloroacetic acid 1.82 2.19 -0.37 2.20 -0.38

40a (3-Bromophenyl)acetonitrile 1.84 2.06 -0.22 2.52 -0.68

41 4-Formylbenzonitrile 1.88 2.86 -0.98 1.98 -0.10

42 Tetrachloromethane 2.03 2.15 -0.12 2.14 -0.11

43 N,N-Diethenylphenylamine 2.11 1.55 0.56 2.38 -0.27

44 1-Chloro-4-ethynylbenzene 2.21 1.18 1.03 1.56 0.65

45 1-Bromo-4-ethynylbenzene 2.28 1.55 0.73 2.62 -0.34

46 2,6-Di(2-propyl)phenol 2.49 2.48 0.01 3.16 -0.67

47 2-Bromoacetic acid 2.63 1.81 0.82 3.14 -0.51

48 2,3,5,6-Tetramethylphenol 2.76 2.17 0.59 3.05 -0.29
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of the results of ANN model (Table 2) and those obtained

by Ignatz-Hoover, it was concluded that the developed

ANN model was superior over previous work.

Sensitivity analysis and descriptor interpretation

Sensitivity analysis of inputs was used to identify the sig-

nificance of individual molecular descriptors and to find the

order of importance of descriptors. The sequential zeroing

of weights (SZW) presented by Nord and Jacobsson was

used to find the contribution of each variable in log Cx

[14]. This method is based on SZW of the connection

between the input variables and the first hidden layer of the

generated ANN model. According to this method, the

parameter that is calculated in order to show the impor-

tance of the ith input variable is the difference between the

root mean square error (RMSE) of the complete network’s

predictions and RMSE obtained when the ith variable is

excluded from the trained network (RMSEi), both being

calculated on the same dataset. Then, the differences

Table 3 continued

No. Name log Cx exp log Cx MLR Residual log Cx ANN Residual

49 Diethyl 2-bromopropanedioate 2.85 2.36 0.49 2.32 0.53

50 3-Methyl-3-buten-2-one oxime 3.04 3.53 -0.49 3.46 -0.42

51 Methanesulfonyl chloride 3.07 3.50 -0.43 2.94 0.13

52 (E)-2-Butenal oxime 3.18 3.63 -0.45 3.62 -0.44

53b (1,2-Dibromoethyl)benzene 3.29 1.66 1.63 1.67 1.62

54 4-Methyl-2-pentanone oxime 3.36 3.22 0.14 3.03 0.33

55 Triphenylgermane 3.36 3.46 -0.10 3.16 0.20

56 Triethylgermane 3.38 2.77 0.61 3.20 0.18

57 3-Buten-2-one oxime 3.43 3.50 -0.07 3.47 -0.04

58a 4-Methoxybenzenesulfonyl chloride 3.49 4.19 -0.70 3.75 -0.26

59 1-Ethynyl-4-nitrobenzene 3.50 2.47 1.03 3.52 -0.02

60 4-Methylbenzenesulfonyl chloride 3.50 3.53 -0.03 3.32 0.18

61 Phenylmethanesulfonyl chloride 3.50 4.16 -0.66 3.90 -0.40

62 2-Chloroacetyl chloride 3.52 1.73 1.79 2.55 0.97

63 4-tert-Butyl-1,2-benzenediol 3.56 3.05 0.51 3.25 0.31

64 2-Methyl-1-penten-3-one oxime 3.63 4.03 -0.40 3.79 -0.16

65 Benzenesulfonyl chloride 3.64 3.43 0.21 3.57 0.07

66a 4-Chlorobenzenesulfonyl chloride 3.88 3.78 0.10 3.75 0.13

67 Iodoacetic acid 3.90 3.01 0.89 3.90 0.00

68 Acetyl bromide 3.93 2.02 1.91 3.29 0.64

69 1,2,3-Benzenetriol 4.02 4.15 -0.13 4.45 -0.43

70 1-Propenaldoxime 4.03 3.62 0.41 3.73 0.30

71a Diethyl 2,2-dibromopropanedioate 4.08 3.16 0.92 3.71 0.37

72 2-Methyl-2-propenal oxime 4.11 3.52 0.59 3.63 0.48

73 Tetrabromomethane 4.33 3.93 0.40 4.29 0.04

74 Chlorodiethylgermane 4.50 4.51 -0.01 4.23 0.27

75a Chlorodimethylgermane 4.52 4.70 -0.18 4.36 0.16

76 Dichloroethylgermane 4.76 5.21 -0.45 4.97 -0.21

77 2,4,6-Trinitrophenylamine 5.07 5.66 -0.59 5.52 -0.45

78 2-Methoxy-1,3,5-trinitrobenzene 5.31 6.19 -0.88 5.13 0.18

79b 2,4,6-Trinitrophenol 5.32 5.07 0.25 5.51 -0.19

80 1,3,5-Trinitrobenzene 5.55 5.11 0.44 5.59 -0.04

81 2,5-Dimethyl-2,5-cyclohexadiene-1,4-dione 5.63 5.76 -0.13 5.52 0.11

82b Ethyl 2,4,6-trinitrobenzoate 5.76 5.74 0.02 5.80 -0.04

83 2-Bromo-1,3,5-trinitrobenzene 5.76 5.94 -0.18 5.84 -0.08

84 2,5-Cyclohexadiene-1,4-dione 6.36 5.99 0.37 5.78 0.58

a, b The internal and external test sets, respectively
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between RMSEi and RMSE were calculated (DRMSE) for

all inputs. Each variable that produces a greater value of

DRMSE is more important. The result of this procedure on

the ANN model is shown in Fig. 3.

As can be seen in this figure, the order of importance

of selected molecular descriptors is BOC,min [ DHf/

NA [ 1v[ HDCA-1 [ ELUMO [ CHD. According to this

analysis, the most important descriptor in the model is the

Min[(0.1) bond order of a C atom that is a quantum

mechanical valency-related descriptor. This descriptor

relates to the strength of intramolecular bonding interac-

tions and characterizes the stability, conformational

flexibility, and other valency-related properties of mole-

cules and can account for the probability of formation of

the carbon-centered radical (X�) that is the presumed

intermediate in the chain transfer reaction [10, 15]. The

second descriptor in the model is the final heat of forma-

tion/number of atoms, which is a quantum chemical

descriptor that quantifies reactive bonds and stability of the

molecule [16, 17]. The next descriptor is the first-order

Kier and Hall index. This topological descriptor describes

the atomic connectivity in the molecule [18, 19]. The first-

order Kier and Hall index reflects the influence of the steric

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Training

Internal

External

log  expCx

lo
g

 c
al

C
x

Fig. 1 Plot of ANN calculated versus experimental value of log Cx

-0.2

-0.1

0

0.1

0.2

0 0.2 0.4 0.6 0.8 1 1.2

Training
Internal
External

logC  expx

R
es

id
ua

l

Fig. 2 Plot of ANN calculated residuals versus experimental value

of log Cx

0

0.001

0.002

0.003

0.004

HDCA-1 CHD

Descriptor

D
R

M
SE

ELUMOBOC,min ΔHf /NA1

Fig. 3 Results of sensitivity analysis

Table 4 Specifications of the multiple linear regression model

Descriptor Notation Coefficient Standard error t value Sig

Kier and Hall index (order 1) 1v 0.451 ±0.050 8.989 0.000

Final heat of formation/# of atoms DHf/NA 0.100 ±0.022 4.487 0.000

Energy of the lowest unoccupied molecular orbital ELUMO -1.264 ±0.084 -15.041 0.000

Count of H-donor sites (quantum-chemical PC) CHD 0.115 ±0.028 4.176 0.000

HA dependent HDCA-1/TMSA (quantum-chemical PC) HDCA-1 73.071 ±9.841 7.425 0.000

Min[(0.1) bond order of a C atom BOC,min 1.541 ±0.250 6.166 0.000

Constant -1.215 ±0.268 -4.532 0.000
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factor on the reactivity of the transfer agents [10]. Another

descriptor is the hydrogen-bonding dependent hydrogen

donor charged area, HDCA-1, which is a quantum chem-

ical descriptor [15]. This descriptor is hydrogen bonding

acceptor-dependent hydrogen bonding donor surface area,

and encodes the hydrogen bonding acceptor properties of

the compounds. Furthermore, the HA-dependent HDCA-1

descriptor reflects the importance of the polarity and

hydrogen-bonding ability of the transfer agents, which can

facilitate the chain transfer reaction. ELUMO is the fifth

descriptor in the model that denotes the energy of the

lowest unoccupied molecular orbital. Eventually, as

expected, molecules with lower LUMO energies are more

reactive [10]. The last descriptor is the count of the

H-donor sites in the transfer agents, which distinguishes the

molecules according to the number of hydrogen donor sites

that are capable of donating a hydrogen [10, 15].

Methodology

Dataset

The dataset consists of the numerical values of kinetic

chain transfer constants (log Cx) of 84 different organic

agents, which were used as the chain transfer agent in free-

radical polymerization of styrene at 60 �C taken from [10].

A complete list of the compound’s names and corre-

sponding experimental log Cx values is given in Table 3.

The maximum value of log Cx is 6.36 for 2,5-cyclohexa-

diene-1,4-dione and the minimum value is -1.56 for

benzene.

The dataset was divided by using a diversity plot to

training, internal, and external test sets, containing 66, 9,

and 9 memberas, respectively. The training set was used

for adjusting the model parameters, the internal test set was

used for preventing of overtraining during ANN model

development, and the external test set was used to evaluate

the reliability of the obtained models.

Molecular descriptors

Since molecular structures and chemical characteristics of

molecules affect their activities/properties, it was necessary

to calculate the molecular structural features (molecular

descriptors) of transfer agents to predict their chain transfer

constant values. Molecular descriptors encode quantita-

tively the structural and physicochemical features of

molecules [20]. In order to compute the molecular descrip-

tors, the structure of each compound was entered via the

drawing capabilities of HyperChem (v.7.0) [21]. Then the

three-dimensional structures of molecules were pre-opti-

mized with the MM? molecular mechanics method and then

submitted to the semi-empirical quantum chemical AM1

method for geometry optimization to generate three-

dimensional structures of molecules [22]. The final optimi-

zation of molecular geometry was done using the MOPAC

(v.6.0) package [23]. Then, the output of MOPAC and

HyperChem files were used for producing constitutional,

geometrical, topological, electrostatic, and quantum-chem-

ical descriptors by using the CODESSA (comprehensive

descriptors for structural and statistical analysis) package

[24]. The CODESSA software, developed by the Katritzky

group, enables the calculation of many quantitative

descriptors based on the molecular structural information,

and codes this chemical information into mathematical form

[25–27].

Modeling

Multiple linear regression and artificial neural network

methods were employed as linear and nonlinear modeling

techniques in this study [28]. An important stage in multi-

linear regression is searching the best multi-linear equation

among a given descriptor set, especially when using a large

number of descriptors. Many of these descriptors contain

very little information for response or are highly correlated

with other descriptors. Thus, the next step is to reduce the

number of descriptors by using statistical methods that

ignore the dependent variable. Firstly, descriptors with

constant values were discarded. Then, one of any two

descriptors with a correlation greater than 0.90 was

removed to reduce redundant and non-useful information.

The stepwise multiple linear regression method was used to

select the structural descriptors that are correlated with the

chain transfer constant. Then, the variations of R2 against

the number of descriptors in models were used to select

the number of descriptors in the model (break-point

procedure).

As shown in Fig. 4, no improvement in R2 was observed

after the addition of six parameters to the MLR model.

These parameters were: energy of the lowest unoccupied

molecular orbital (ELUMO), hydrogen-bonding dependent

hydrogen donor charged area (HDCA-1), first-order Kier

and Hall index (1v), final heat of formation/number of

atoms (DHf/NA), count of H donors sites (CHD), and

Min[(0.1) bond order of a C atom (BOC,min). These

descriptors were selected to develop the MLR model. The

specifications of this six-parameter MLR model are pre-

sented in Table 4.

Since linear regression analysis ignores nonlinear rela-

tionships that may exist between property and descriptors,

these descriptors were fed to a three-layered ANN as input

vectors to develop a nonlinear QSRR model. Detailed

descriptions of the theory behind artificial neural networks

have been adequately described elsewhere [29–32]. In
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addition, we reported some relevant principles of the ANNs

in earlier papers [33–35]. In this work, the ANN program

was coded in MATLAB 7 for windows [36]. In the first

step of development of the ANN model, a three-layer

network with a sigmoid transfer function was designed

both for the hidden and output nodes. The values of log Cx

were normalized between 0 and 1 and were used as target

vectors. The number of nodes in the input layer of the

network was equal to the number of descriptors, which

appears in the MLR model. The adjustable weights among

neurons have the random distribution between -0.3 and

0.3. The ANN parameters number of nodes in the hidden

layer, weights learning rate, biases learning rate, and

momentum optimized were set to 4, 0.1, 0.9, and 0.5,

respectively. The procedure of optimizing these parameters

was given in our previous work [37, 38]. The developed

network was then trained by using the training set by back

propagation strategy for optimization of the weights and

bias values. The goal of training the network is to change

the weights among the layers for minimizing the output

errors. It should be noted that to prevent overfitting the

training of the network must be stopped when the RMSE in

the prediction of log Cx of the internal test set starts to

increase. Then, the trained network was used to calculate

the log Cx values of the external test set as well as the

internal and training sets.
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